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Abstract Developing genetically diverse core sets is key

to the effective management and use of crop genetic

resources. Core selection increasingly uses molecular

marker-based dissimilarity and clustering methods, under

the implicit assumption that markers and genes of interest

are genetically correlated. In practice, low marker densities

mean that genome-wide correlations are mainly caused by

genetic differentiation, rather than by physical linkage.

Although of central concern, genetic differentiation per se

is not specifically targeted by most commonly employed

dissimilarity and clustering methods. Principal component

analysis (PCA) on genotypic data is known to effectively

describe the inter-locus correlations caused by differentia-

tion, but to date there has been no evaluation of its appli-

cation to core selection. Here, we explore PCA-based

clustering of marker data as a basis for core selection, with

the aim of demonstrating its use in capturing genetic dif-

ferentiation in the data. Using simulated datasets, we show

that replacing full-rank genotypic data by the subset of

genetically significant PCs leads to better description of

differentiation and improves assignment of genotypes to

their population of origin. We test the effectiveness of

differentiation as a criterion for the formation of core sets

by applying a simple new PCA-based core selection

method to simulated and actual data and comparing its

performance to one of the best existing selection

algorithms. We find that although gains in genetic diversity

are generally modest, PCA-based core selection is equally

effective at maximizing diversity at non-marker loci, while

providing better representation of genetically differentiated

groups.

Introduction

Crop germplasm collections are important repositories of

genetic diversity for plant breeding. The difficulties asso-

ciated with the management and use of large numbers of

accessions (Brown 1989) call for the formation of mini-

mally redundant subsets, or core collections, that maximize

the amount of represented genetic diversity (Frankel 1984;

van Hintum et al. 2000). Increasingly, molecular markers

are used to choose core sets based on aspects of genetic

diversity such as pairwise dissimilarity, allelic richness, or

heterozygostity (Bataillon et al. 1996; Franco et al. 2005;

Jansen and van Hintum 2007; Thachuk et al. 2009; Odong

et al. 2011b), either by maximizing these measures directly

or by defining groups for subsequent stratified sampling of

genotypes using clustering algorithms.

An implicit assumption shared by these methods is that

markers are informative of genetic differences at important

genes and traits (Schoen and Brown 1993). Although

seemingly reasonable, this assumption is only met when

markers and genes are physically linked or when there is

differential genetic ancestry within the sample. Such dif-

ferential ancestry may result from reproductive isolation

between populations or from kinship structure (Sillanpää

2010). Both processes cause heterogeneity in allele fre-

quencies within the gene pool (Astle and Balding 2009),

which we will refer to here as genetic differentiation.

Genetic differentiation translates directly into genome-
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wide correlations in allelic state, which means that maxi-

mizing differentiation when sampling from the gene pool

will simultaneously increase genetic differences at both

markers and unlinked loci. Conversely, sampling within a

homogeneous population means that unlinked loci are

essentially independent and that markers will be uninfor-

mative of genetic differences at other genes.

Marker densities used for core selection are typically

low and differentiation can be expected to be the cause of

most marker–gene associations (Ohta 1982). The efficacy

of core selection methods will therefore depend on the

ability to capture genetic differentiation in marker data.

Surprisingly, the extent to which commonly used dis-

similarity and clustering methods adequately describe

genetic differentiation in genotypic data has seldom been

evaluated.

Simple indices of marker dissimilarity are likely to be

relatively poor measures of genetic differentiation, as they

largely reflect uninformative differences due to random

sampling of alleles within populations. Recent work in

population genetics suggests that reducing multi-locus data

by Principal Component Analysis (PCA) provides a better

description of differentiation, since genome-wide correla-

tions between loci are effectively captured by the leading

Principal components (PCs). Specifically, when genotypes

are sampled from k differentiated populations, the first k-1

PCs reflect allele frequency differences between these

populations while the remaining PCs relate to allelic

sampling error only (Patterson et al. 2006). In addition, a

direct relation between the level of differentiation and

Euclidean distance along the relevant PCs (McVean 2009)

further suggests that distance measures based on PCA may

be appropriate for representing genetic differentiation.

PCA is now commonly applied to marker data (Patter-

son et al. 2006; Becquet et al. 2007; Tishkoff et al. 2009)

and has been used for genetic clustering (Lee et al. 2009;

van Heerwaarden et al. 2010, 2011), but so far there has

been no systematic study of its potential as a basis for more

effective core selection. Here, we analyze how genotypic

core selection may be improved using PCA-based clus-

tering to capture genetic differentiation in the data. We

present our analyses for simple sequence repeat (SSR) data,

currently the predominant data type in crop genetic

resources. For simplicity, we assume that germplasm col-

lections are samples from a limited number, k, of differ-

entiated, genetically homogeneous populations of similar

genetic diversity. We thereby focus on small core sets of

k or fewer individuals, since under the aforementioned

assumptions molecular markers contain no additional

genetic information on repeated samples from the same

populations.

Using simulated datasets, we measure to what extent the

Euclidean distance along the first k-1 PCs improves the

description of genetic differentiation over traditional dis-

similarity indices that use full-rank genetic data. We then

test if clustering based on this reduced set of PCs leads to

better assignment of genotypes to their population of ori-

gin. To choose the number of PCs to retain, we apply a

recent statistical criterion (Patterson et al. 2006; van

Heerwaarden et al. 2010) that we adapt for use with SSR

data. Finally, we demonstrate the effectiveness of PCA-

based clustering for maximizing genetic dissimilarity

within small core sets by comparing a simple PCA-based

selection scheme to one of the best current core selection

algorithms (Thachuk et al. 2009) using simulated and

actual data (Odong et al. 2011a).

Methods

Example dataset

Our example dataset consists of 1,010 individuals of

coconut (Cocos nucifera L.), sampled throughout the spe-

cies geographic range and characterized for 28 SSR loci.

The data were obtained from the central registry hosted by

the Generation Challenge Programme—GCP (http://www.

generationcp.org) and were chosen for its high data quality

and the availability of a published analysis of genetic

structure (Odong et al. 2011a).

Geographic origin of accessions, with abbreviations and

number of individuals between parenthesis was as follows:

Panama (CA: 104), Jamaica (CAR: 4), East Africa (EA:

118), West Africa (tall, WA: 29, dwarf varieties WAd: 3),

Brazil (LA: 70), Pacific (tall, PCF: 343, dwarf varieties,

PCFd: 14), South Asia (SA: 59), South East Asia (tall,

SEA: 138, dwarf varieties, SEAd: 40), and Mexico (Pacific,

NA1: 41 and Atlantic, NA2: 9).

Definition of genetic differentiation

The relation between genetic differentiation and inter-locus

correlation in allelic state follows directly from the prop-

erties of the most common measure of differentiation,

Wright’s Fst (Wright 1951). Fst is a measure of both the

allele frequency variance between reproductively separated

populations and of the coancestry between gametes sam-

pled from the same population. It therefore relates directly

to the expected genetic differences between individuals

from different populations and to the genetic correlation

between unlinked loci. In the absence of gene flow, genetic

drift will cause an increase in Fst according to the relation

Time (generations) = -ln(1-Fst) (Reynolds et al. 1983).

In our study, we therefore defined pairwise genetic differ-

entiation between populations i and j as dF,i,j = -ln(1-

Fst,i,j) and use this measure in all our evaluations of
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representation and maximization of genetic differentiation.

Fst,i,j was calculated according to Weir and Cockerham

(1984) using a custom script in R (R, D.C.T 2009).

Population genetic simulations

Simulations were performed under the standard coalescent

using an adapted version of the program msHOT (Hel-

lenthal and Stephens 2007; Hudson 2002) (Code available

on request). Multi-locus SSR genotypes were simulated

under a stepwise mutation model, the simplest and most

commonly used model of SSR evolution (Kimura and Ohta

1978). Thirty unlinked loci were simulated for a total of

1,100 haploid genotypes, divided into ten differently sized

samples (20, 40…200 haploid genotypes) from ten discrete

populations.

The population recombination rate q (4Nec, where Ne is

the effective population size and c the recombination

fraction per generation) was set to 10,000 to guarantee

independence between loci. The population mutation rate h
of 9 was set to achieve similar expected heterozygosity to

that observed in our coconut dataset (He = 0.69). For

applications requiring different levels of differentiation

between population pairs, we used a random migration

matrix with resulting pairwise Fst values between 0.06 and

0.15 (mean 0.11). For other applications, three fixed

migration rates were used (Fst = 0.06, 0.11, 0.20) to

achieve equal differentiation between populations. Levels

of differentiation were chosen to be lower than those

observed in our sample dataset. Diploid individuals were

constructed by sampling random sets of two or four

genotypes with replacement, yielding 550 individuals.

Capturing differentiation by principal component

analysis of genotypic data

Genotypic dissimilarity is typically calculated on the full-

rank matrix of allele counts. Here, we propose using a

reduced set of PCs obtained by PCA of the original data

matrix to accentuate between-population differentiation in

the data (Lee et al. 2009).

We represent genotypic information by a set of indi-

vidual by allele matrices Si (i = 1…L), containing the

allele counts for each allele of locus i. The number of

columns of Si is equal to the number of alleles per locus,

with each column having a minimum integer value of 0 and

a maximum value equal to the ploidy level (2 in the diploid

case). Since the columns of Si are not independent, we

followed a normalization procedure that was previously

proposed for linked SNP data (van Heerwaarden et al.

2010). Briefly, a normalized matrix M with independent

columns of equal variance was created by concatenating

PCs calculated separately for each Si (using the function

prcomp in R). After removing columns (PCs) that explain

less than 0.5 % of total variance, each remaining column

was standardized by dividing by its standard deviation.

Principal component analysis is subsequently performed

on this normalized matrix M. Since inter-locus correlations

caused by differentiation between k populations should be

fully represented by the first k-1 PCs, we considered only

k-1 PCs in our evaluations of dissimilarity and clustering

using simulated data, where k was known.

Correlation between dissimilarity measures and genetic

differentiation

Genotypic core selection requires a measure of marker

dissimilarity that adequately predicts dissimilarity at loci of

agronomic interest. As discussed above, such inter-locus

predictability depends on genetic differentiation, making it

important to establish how well dissimilarity measures

correlate with genetic differentiation. Differentiation is

defined at the population level, with individuals within

populations assumed to be unrelated. For k populations, the

differentiation for all pairwise population comparisons is

defined by a matrix of k 9 (k ? 1)/2 dF,i,j values, with a 0

diagonal. A matrix of genetic differentiation between

n individual genotypes can therefore be represented by

expanding the above matrix of size k 9 (k ? 1)/2 into a

block matrix of n 9 (n-1)/2 elements.

Using simulations with random migration (mean Fst

0.11, 10 replicates), we assessed the correlation of dF,i,j

with the following pairwise dissimilarity measures:

Euclidean distance based on the full matrix of allele counts

(e.g. Reif et al. 2005), proportion of shared alleles (Bow-

cock et al. 1994); Nei 1972); Reynolds (Reynolds et al.

1983), 1-Jaccard (Jaccard 1908), 1-Dice (Dice 1945) and

Rogers and Tanimoto (Rogers and Tanimoto 1960). We

compared the above measures to what we will refer to here

as PCA-reduced dissimilarity, the Euclidean distance cal-

culated from the first k-1 PCs obtained from PCA on the

normalized genotypic matrix M.

We evaluated the correlation of dissimilarity measures

with dF,i,j in two different ways. First, we measured the

correlation between the matrix of k 9 (k-1)/2, off-diago-

nal dF,i,j values, and a k 9 (k-1)/2 matrix of mean dis-

similarity values, obtained by averaging n 9 (n-1)/2

pairwise values over their corresponding (among-popula-

tion) blocks. This provides an estimate of the extent to

which the mean value of each measure correlates to genetic

differentiation between known populations. This is of

theoretical relevance, since measures such as Nei and

Reynolds dissimilarity were conceived as population-level

estimators of genetic difference. Second, we estimated the

correlation between the matrix of n 9 (n-1)/2 individual

pairwise dissimilarity values to the structured block matrix
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of size n 9 (n-1)/2 containing k (k ? 1)/2 blocks of dF,i,j

values. This correlation estimates the capacity to capture

differentiation without knowing the population delimita-

tions and is of practical interest as it directly relates to

subsequent clustering performance. Quantification of dif-

ferences was done by ANOVA, followed by Fisher’s pro-

tected least significant difference procedure at p = 0.05,

after correction for replicate means. Untransformed values

were used for convenience.

Ability of classification methods to capture genetic

differentiation

Assuming that germplasm collections consist of discrete,

internally homogeneous groups, genetic differentiation in

the germplasm collection can be completely defined by

classifying genotypes into distinct genetic clusters. The

extent to which this adequately describes differentiation

depends on the capacity to assign individuals to their cor-

rect genetic group.

Based on simulated datasets with three different levels

of genetic differentiation (Fst = 0.06, 0.11, 0.20, 10 rep-

licates), we compared different clustering methods for

assignment success. We measured assignment success as

the correlation between the two n 9 (n-1)/2 pairwise

indicator matrices of true and inferred shared group

membership, coded as a binary state (1 for pairs within the

same group, 0 for pairs from different groups). We com-

pared the following methods: k-means, k-medoid (Kauf-

man and Rousseeuw 1990), UPGMA, and Ward. The

k-means and medoids methods represent two commonly

used non-hierarchical clustering techniques while UPGMA

and Ward’s algorithm are common hierarchical clustering

techniques. We assumed the number of differentiated

groups to be known, assigning genotypes to the k = 10

groups using the function cutree in R.

All methods were applied to a full-rank dissimilarity

matrix, using the measure with the highest overall corre-

lation to dF,i,j, and to the PCA-reduced dissimilarity matrix.

We also included model-based Gaussian hierarchical

clustering (Fraley 1998) on the first k-1 PCs, as recently

applied to human SNP data (Lee et al. 2009). This method

assigns individuals to groups by fitting a mixture of mul-

tivariate normal distributions to the data and calculating the

maximum likelihood of group membership by expectation

maximization (EM) (Banfield and Raftery 1993). We used

the implementation provided by the R package mclust

(Fraley and Raftery 1999, 2002), employing the spherical,

variable volume (VII) covariance model. This model was

chosen because of the expectation of spherical clusters

under an island model without admixture (McVean 2009).

Statistical evaluation of differences was performed as

described above.

Choosing the appropriate number of clusters

Although our evaluation of clustering performance

assumes a priori knowledge of the number of differentiated

groups, in practice the number of genetic groups needs to

be inferred (Franco et al. 1997). It was shown recently

(Patterson et al. 2006) that PCA on a normalized matrix of

m independent (i.e., unlinked) SNP markers scored in

n individuals, sampled from k differentiated populations

and with m [ n, yields k-1 significant eigenvalues when

tested against a Tracy–Widom (TW) distribution (Tracy

and Widom 1994; Johnstone 2001). Our normalized SSR

genotype matrix M satisfies the requirement of indepen-

dent columns of equal variance, and eigenvalues of

covariance matrix of M approximately follow the TW

distribution in the absence of structure (Van Heerwaarden

et al. 2010). We follow the exact procedure of Patterson

et al. 2006, but propose using the transposed matrix MT

instead of M when m \ n. This restores the condition of

n \ m (Johnstone 2001) without affecting the actual

eigenvalues and simulations show it provides a better fit to

the TW distribution (Figure S1a, b). We compared this

method to statistical stopping criteria based on Ward

clustering of the pair-wise Euclidean distances. Ward

clustering was recently shown to work better than UPGMA

with most stopping criteria (Odong et al. 2011a). Using 100

simulated datasets of ten populations with three levels of

differentiation (Fst = 0.06, 0.11, 0.20), we evaluated the

following stopping criteria: Rousseeuw’s Silhouette inter-

nal cluster quality index, Point biserial index, Hubert and

Levin C-index (Milligan and Cooper 1985; Odong et al.

2011a).

Using PCA-based clustering to maximize

differentiation during core selection

Once differentiated populations within the germplasm

collection have been correctly defined, we may in principle

ignore marker dissimilarities within these populations and

aim directly at maximizing genetic differentiation between

represented genetic groups. To demonstrate this approach,

we explore the case of a small core set, where the size of

the subset is equal or smaller than the actual number of

differentiated groups. For this case, we propose the fol-

lowing simple procedure for genotype selection using

PCA-based clustering:

(1) Do PCA on the normalized genotype matrix M as

described above. (2) Determine the number of significant

eigenvalues, say k-1, of M (or MT when m \ n) by

comparing the value of normalized eigenvalues to the TW

distribution. (3) Using mclust, assign individuals to

k groups by fitting a mixture of k multivariate normal

distributions to the matrix of k-1 significant PCs obtained
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from PCA on M. This yields the k-dimensional multivar-

iate means (center points) of each group. (4) For a desired

genotype subset of size s (with s \ k), generate all possible

samples of genetic groups and calculate the mean Euclid-

ean distances in k-1 dimensional PC space between the

center points of the sampled groups. This will be compu-

tationally feasible up to k * 35. Choose the groups that

maximize the Euclidean distance between their center

points, and select the s individuals with the least Euclidean

distance to center point of their corresponding group. This

procedure is aimed at maximizing genetic differentiation

between the populations from which the selected genotypes

are sampled and will work as long as k is relatively small.

Validation of PCA-based core selection by comparison

with Core Hunter

We evaluated the performance of this PCA-based core

selection procedure by comparing against Core Hunter

(Thachuk et al. 2009), a recent stochastic local search

(SLS) algorithm that selects genotypes by maximizing one

or several genetic distance and diversity measures by rep-

lica exchange Monte Carlo. It was shown by its authors to

outperform several existing core selection methods, par-

ticularly for maximizing single diversity measures at

marker loci. We simulated 10 populations with fixed

migration rates to ensure identical differentiation for each

population (50 replicates). At three levels of differentiation

(Fst = 0.06, 0.11, 0.2), we tested the performance of both

methods in maximizing the mean Euclidean distance at 30

marker loci and 30 target loci (i.e., functionally important

non-marker loci) in a subset of 10 selected genotypes. Core

Hunter was thereby set to maximize the Modified Rogers

distance, which is proportional to the Euclidean distance

(Reif et al. 2005). We also evaluated the number of rep-

resented populations, as well as maximization of average

pairwise Fst between sampled populations, for the case

where the number of populations exceeded number of

selected individuals. The latter was evaluated in core sets

of five individuals selected from 10 differentiated popula-

tions (random migration, pairwise Fst = 0.06–0.15, 20

replicates).

For the coconut data, we compared a small subset of 5

individuals selected by Core Hunter to a subset chosen by

our core selection procedure. We removed highly inbred

individuals by setting a cut-off at the 0.05 quantile of

observed heterozygosity. Performance at target loci was

evaluated by selecting based on random subsets of 20 loci

and measuring the Euclidean distance at the 8 remaining

loci. Significance between the two methods and random

selection was tested with ANOVA as described above,

using 100 sub-samples as replicates. We also compared the

realized population differentiation, dF, within each subset,

where dF was calculated between genetic groups identified

by model-based Gaussian clustering on the significant PCs.

Results

Correlation between dissimilarity measures and genetic

differentiation

Reynold’s dissimilarity has the highest correlation with

genetic differentiation (Fig. 1, Table S1) when averaged

over among-population comparisons, reflecting the fact

that its theoretical expectation is Fst (Reynolds et al. 1983).

It performs poorly as an individual-level dissimilarity,

however, which is probably due to its large variance

(Reynolds et al. 1983). Jaccard dissimilarity, proportion of

shared alleles, and Euclidean distance all perform signifi-

cantly better in this respect. In addition, the among-popu-

lation means of the Euclidean distance also has a high

correlation with dF, suggesting it as the most appropriate

full-rank dissimilarity for describing genetic differentiation.

Although the among-population means of PCA-reduced

dissimilarity do not have a particularly high correlation with

dF, it clearly outperforms all other dissimilarities as an

individual measure, confirming its potential for capturing

genetic differentiation in the absence of prior population

definitions.
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Fig. 1 Correlation between different distance measures and pairwise

population differentiation dF, in ten simulated datasets (Fst = 0.11).

Results are presented for individual distances and distances averaged

over population comparisons. de Euclidean, da proportion of shared

alleles, dn Nei (1972), dr Reynolds, dj Jaccard, dd Dice, drt Rogers &

Tanimoto, PC Euclidean distance using k-1 PCs. Whiskers represent

standard errors. Letters above each bar indicate significantly different

means within each of the two distance types (Fisher’s LSD)
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Ability of classification methods to capture genetic

differentiation

Clustering performance, as measured by the correlation

between true and inferred population assignment matrices,

confirms the benefit of reducing genetic data by PCA

(Fig. 2, Table S2). At every level of differentiation, all

clustering methods show improved assignment success

when using PCA-reduced dissimilarity instead of the full-

rank Euclidean distance matrix (ANOVA, p \ 0.0001).

Although at the highest levels of differentiation perfor-

mance deviates little between methods, at lower levels

differences become evident. UPGMA clustering is clearly

the weakest method, while Ward clustering using PCA-

reduced dissimilarity and particularly model-based

clustering on the first k-1 PCs outperform the other

methods in terms of assignment success.

Choosing the appropriate number of clusters

Although at the highest level of differentiation all stopping

criteria show similar (Fig. 3) performance, TW-based PC

significance is the only criterion that provides reasonable

estimates of the true number of genetic groups across all

levels of differentiation. The Point Biserial index and

particularly the C-index considerably overestimate the

number of groups at lower levels of differentiation, while

Rousseeuw’s Silhouette index quite severely underesti-

mates the number of groups at Fst = 0.06. In spite of its

stable performance, TW-based PC significance also

underestimates the number of groups by 1 and 2 at the two

lower levels of differentiation, probably reflecting a failure

to detect the smallest populations.

Validation of PCA-based core selection by comparison

with Core Hunter

Core Hunter clearly outperforms PCA-based core selection

in terms of maximization of dissimilarity at marker loci

(Fig. 4). For each level of differentiation, the average full-

rank Euclidean distance over the 50 replicates was about

16–21 % higher than that achieved by PCA-based and

random selection. At target (non-marker) loci, however, the

average distance is only slightly higher than that of random

and equal to that achieved by PCA-based selection. Both

selection methods achieve distance gains that, although

significant, are only 2 % above random expectations.

In terms of representation of genetic differentiation,

defined as the number of sampled populations, selection by

PCA-based clustering outperforms Core Hunter at all three

levels of differentiation. At Fst = 0.06, it samples 9 or

more groups in 68 percent of cases (average 8.7) against no

cases for Core Hunter (average 6.8). For Fst = 0.11 and

Fst = 0.20, PCA-based selection yields 9 or more groups in
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reducedfullaa
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aa ab
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aaa a

b

Fig. 2 Assignment success (correlation between true and inferred

binary assignment matrices) in ten simulated datasets at three levels

of differentiation, using the full-rank dissimilarity matrices (full) and

PCA-reduced similarity (reduced). U UPGMA, W Ward K: k-means,

M Medoid clustering, MC model-based clustering on 9 PCs, Whiskers
represent standard errors. Letters above each bar indicate significantly

different means within each level of differentiation (Fisher’s LSD)

0.20 0.11 0.06

0
10

20
30

RS Ci PB TW RS Ci PB TW RS Ci PB TW

Fig. 3 Violin plots showing the density distribution of the number of

groups (vertical axis) inferred for 100 simulated datasets, using

different stopping criteria. Results are presented for three levels of

differentiation (Fst: 0.20, 0.11, 0.06). RS Rousseeuw’s Silhouette

internal cluster quality index, Ci Hubert and levin C-index, PB Point

biserial index, TW Tracy-Widom significance
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96 and 88 % of cases (average 9.4 and 9.3) against 6 and

38 % (average 7.4 and 8.2) for Core Hunter. Both methods

perform better than random. Similarly, PCA-based selec-

tion of a subset of five populations achieves a significantly

higher differentiation of dF = 0.211 (maximum achievable

value of 0.222) against 0.201 for Core Hunter and 0.179 for

random selections.

PCA-based clustering and core selection in coconut

PCA on the coconut dataset reveals the presence of signifi-

cant population structure. The total number of significant

PCs is 14, explaining 23 % of variance. Model-based clus-

tering into 15 groups produces geographically sensible

clusters (Fig. 5), with an average pairwise dF of 0.25. Some

clusters are closely related and form larger geographic

groups. The Pacific accessions (PCF) are represented by as

many as 6 clusters, some of which show differentiation as

high as 0.14. The Panamanian (CA) accessions form a rather

distinct set of two clusters that group relatively close to South

East Asian (SEA) and Pacific (PCF) accessions. Another set

of three closely related clusters clearly separate the South

Asian (SA), Brazilian (LA), and West African (WA)

accessions. Consistent with earlier results (Odong et al.

2011a), Mexican Pacific (NA1) and Atlantic accessions fall

in different clusters with Pacific (PCF) and South Asian (SA)

accessions, respectively. The South East Asian Dwarf

accessions (SEAd) also form a separate cluster, together with

a number of Pacific Dwarf (PCFd) accessions.

Comparison between our PCA-based core selection

method and Core Hunter yields similar results to the

simulated data. Core Hunter greatly outperforms PCA-

based selection at marker loci, with a mean Euclidean

distance that is 24 % higher (0.82 against 0.66) and 35 %

better than random (0.61). At target (non-marker) loci, a

much lower although significant 5 % difference remains

(0.70 vs. 0.67) with the two methods performing 16 and

12 % better than random (0.61). Inspection of the core

selections produced by both methods reveals that contrary

to PCA-based core selection, Core Hunter tends to select

the same genotypes repeatedly. Six individuals in particular

are sampled more than 25 out of 100 times by Core Hunter.

Low levels of observed heterozygosity in these individuals

(0.19 compared to an average of 0.43) suggest that these

may be relatively inbred genotypes acting as outliers with

respect to overall patterns of differentiation. Excluding

these genotypes confirms this. Although Core Hunter still

achieves substantial gains at marker loci (0.80 against 0.66

in the PCA-based selection), the difference at target loci is

no longer significant (0.67 against 0.68).

Discussion

Core collections need to capture the maximum amount of

genetic diversity in a small subset of accessions (Frankel

1984). Presently, molecular markers are the most popular

means of describing this diversity, either by themselves or

in conjunction with phenotypic traits (Schoen and Brown

1993; Franco et al. 2009). In contrast to phenotypic traits,

unlinked molecular markers are not of interest in them-

selves, but serve to detect genetic differentiation associated

with patterns of reproductive isolation within the gene

pool. Since differentiation determines the level of genetic

correlation between loci, it can be argued to provide the

best predictor of genome-wide patterns of dissimilarity. In

spite of its importance, most methods of marker-based core

selection do not take explicit account of genetic differen-

tiation but instead focus on maximizing dissimilarity at

marker loci (e.g. Franco et al. 2006; Thachuk et al. 2009).

We have shown here that most dissimilarity measures

are relatively poor descriptors of genetic differentiation,

even when their expected values correlate strongly with dF.

This is not entirely surprising, as their within-population

variance is high due to the small sample sizes implied by

the comparison of individual genotypes (Nei and Roy-

choudhury 1974; Goldstein et al. 1995).

We confirm that representing the genotypic data by the

subset of PCs associated with genetic differentiation pro-

vides a better basis for describing genetic structure in the

data. The Euclidean distance calculated on these PCs has a

stronger correlation with genetic differentiation than full-

rank distance measures, while improving population

assignment success. In agreement with a recent study using

marker target
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Fig. 4 Proportional gain in mean Euclidean distances of selected

over random core sets (10 individuals), sampled from ten simulated

populations at three levels of differentiation. PC selection by PCA-

based clustering, CH selection based on Core Hunter, marker marker

loci, target target (non-marker) loci. Stars indicate values signifi-

cantly higher than 0
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SNP data (Lee et al. 2009), we find that the combination of

PCA with model-based clustering using mclust performs

particularly well. These results prove the potential of PCA-

based clustering for core set selection with the aim of

representing genetic differentiation.

The practical application of PCA-based clustering

requires an effective method for defining the number of

components to be retained. Although many statistical cri-

teria exist (Milligan and Cooper 1985), none relates

directly to genetic differentiation. We demonstrate that

testing the significance of eigenvalues against the TW

distribution (Tracy and Widom 1994), as pioneered by

Patterson et al. (2006), works well for properly normalized

SSR data. Significant PCs reflect the covariance between

markers that is caused by differential coancestry in the data

(Patterson et al. 2006) thus providing a statistic that relates

directly to genetic differentiation and the expected corre-

lation between unlinked loci. The value of this procedure is

evident not only from its favorable performance on simu-

lated data but also by its ability to reveal a larger number of

geographically sensible groups than found in earlier studies

(Odong et al. 2011a).

The capacity of PCA-based clustering to capture genetic

differentiation suggests that it provides a powerful basis for

the selection of genotypic core sets. This is confirmed by

the comparison of our implementation of PCA-based core

selection with the Core Hunter algorithm (Thachuk et al.

2009). Core Hunter was reported to outperform two of the

most widely used core selection methods, Mstrat (Goues-

nard et al. 2001) and Franco et al.’s D method (Franco et al.

2005) in creating sets of maximum diversity. Although in

our simulations Core Hunter indeed achieves the highest

average distance at marker loci, its performance at non-

marker loci does not surpass that achieved by our method.

In addition, by ignoring genetic differentiation, Core

Hunter tends to under-sample differentiated populations.

We show that selection using PCA-based clustering

achieves similar gains at target loci while better presenting

the genetic differentiation in the data.

These results show that although maximization algo-

rithms such as Core Hunter may be effective in increasing

dissimilarity, the actual gains will not exceed what can be

achieved by adequately sampling differentiated popula-

tions. In fact, the consideration that within homogenous

populations, unlinked markers are genetically uninforma-

tive, means that in many cases the problem of high

dimensionality (i.e., the large number of pairwise rela-

tionships to consider) in core selection can be reduced by

PCA-based clustering. For the small core sets considered

here, rather than considering all possible combinations of

sampled individuals, accessions may be chosen by maxi-

mizing differentiation between a limited number of inter-

nally homogeneous groups. In addition, since samples from

the same group are genetically equivalent under our

assumptions, larger core sets can simply be obtained by

uniform stratified sampling, although sampling weighted

by within-group diversity may be more desirable in prac-

tice (Franco et al. 2005). Our procedure obviously works

best when a limited number of well sampled groups are

present in the data. Our observation of the effect of outlier

individuals in the coconut data, for example, suggests that

actual data may sometimes deviate from these simple

assumptions. For very complex coancestry patterns or

when the data contain many groups, it may therefore be

Fig. 5 PCA plot with accessions colored by genetic group (a) and

Neighbor Joining tree based on pairwise dF between the 15 PCA

groups (b). CA Panama, CAR Jamaica, EA East Africa, WA West

Africa (tall), Wad West Africa (dwarf), LA Brazil, PCF Pacific (tall),

PCFd Pacific (dwarf), SA South Asia, SEA South East Asia (tall),

SEAd South East Asia (dwarf), NA1: Mexico (Pacific), NA2 Mexico

(Atlantic)
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preferable to use an algorithm like that implemented in

Core Hunter to maximize PCA-based distances directly,

rather than relying on the identification of discrete clusters.

Finally, it is interesting to note that in spite of the good

performance of our core selection method, gains in both

dissimilarity at target loci and genetic differentiation are

modest. Although seemingly discouraging, it does not

reflect the limitations of our method but rather the realities

of marker-based core selection. The number of differenti-

ated groups and levels of differentiation typically present in

the data mean that true gains will be modest, regardless of

the method used. It is important to realize, however, that

genetic PCs, by reflecting barriers to gene flow, often

correlate with geography and environment (Manel et al.

2007; Eckert et al. 2010). As such, core selection using

PCA-based clustering may allow better sampling of

selective environments with potentially strong effects on

genes and traits of agronomical interest.
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